Write your name here			
Surname	Other na	ames	
Pearson Edexcel GCE	Centre Number	Candidate Number	
AS and A level Further Mathematics Core Pure Mathematics			
Practice Paper Series			
You must have: Mathematical Formulae and	Statistical Tables (Pink)	Total Marks	

Instructions

- Use black ink or ball-point pen.
- If pencil is used for diagrams/sketches/graphs it must be dark (HB or B).
- Fill in the boxes at the top of this page with your name, centre number and candidate number.
- Answer all the questions and ensure that your answers to parts of questions are clearly labelled.
- Answer the questions in the spaces provided there may be more space than you need.
- You should show sufficient working to make your methods clear. Answers without working may not gain full credit.
- Inexact answers should be given to three significant figures unless otherwise stated.

Information

- A booklet 'Mathematical Formulae and Statistical Tables' is provided.
- There are 10 questions in this question paper. The total mark for this paper is 80.
- The marks for each question are shown in brackets use this as a guide as to how much time to spend on each question.
- Calculators must not be used for questions marked with a * sign.

Advice

- Read each question carefully before you start to answer it.
- Try to answer every question.
- Check your answers if you have time at the end.
- If you change your mind about an answer, cross it out and put your new answer and any working underneath.

1. Show, using the formulae for $\sum_{r=1}^{n} r$ and $\sum_{r=1}^{n} r^2$, that

$$\sum_{r=1}^{n} 3(2r-1)^{2} = n(2n+1)(2n-1), \text{ for all positive integers } n.$$

(Total 5 marks)

2. (a) Using the formula for $\sum_{r=1}^{n} r^2$ write down, in terms of *n* only, an expression for

(*b*) Show that, for all integers *n*, where
$$n > 0$$
,

$$\sum_{r=2n+1}^{3n} r^2 = \frac{n}{6} (an^2 + bn + c)$$

 $\sum_{r=1}^{3n} r^2$

where the values of the constants a, b and c are to be found.

(4)

(1)

(Total 5 marks)

3. (a) Using the formulae for
$$\sum_{r=1}^{n} r$$
 and $\sum_{r=1}^{n} r^2$, show that

$$\sum_{r=1}^{n} (r+1)(r+4) = \frac{n}{3}(n+4)(n+5)$$

for all positive integers *n*.

(b) Hence show that

$$\sum_{r=n+1}^{2n} (r+1)(r+4) = \frac{n}{3}(n+1)(an+b)$$

where a and b are integers to be found.

(3)

(Total 8 marks)

Turn over

(5)

4. (a) Use the standard results for $\sum_{r=1}^{n} r^3$ and $\sum_{r=1}^{n} r$ to show that

 $\sum_{r=1}^{n} (r^{3} + 6r - 3) = \frac{1}{4}n^{2}(n + 2n + 13)$

for all positive integers *n*.

(5)

(b) Hence find the exact value of

$$\sum_{r=16}^{30} (r^3 + 6r - 3).$$

(2)

(Total	7	marks)
--------	---	--------

5. (a) Use the results for $\sum_{r=1}^{n} r$, $\sum_{r=1}^{n} r^2$ and $\sum_{r=1}^{n} r^3$, to prove that $\sum_{r=1}^{n} r(r+1)(r+5) = \frac{1}{4}n(n+1)(n+2)(n+7)$

for all positive integers *n*.

(5)

(b) Hence, or otherwise, find the value of

$$\sum_{r=20}^{50} r(r+1)(r+5)$$

(2)

(Total 7 marks)

6. (a) Use the standard results for
$$\sum_{r=1}^{n} r$$
 and $\sum_{r=1}^{n} r^{3}$ to show that

$$\sum_{r=1}^{n} r(r^{2}-3) = \frac{1}{4}n(n+1)(n+3)(n-2)$$
(5)

(b) Calculate the value of
$$\sum_{r=10}^{50} r(r^2 - 3)$$
.

(3)

(Total 8 marks)

7. (a) Use the standard results for
$$\sum_{r=1}^{n} r$$
 and $\sum_{r=1}^{n} r^2$ to show that

$$\sum_{r=1}^{n} (2r-1)^2 = \frac{1}{3}n(4n^2-1)$$
(6)

(*b*) Hence show that

$$\sum_{r=2n+1}^{4n} (2r-1)^2 = an(bn^2 - 1)$$

where *a* and *b* are constants to be found.

(3)

(Total 9 marks)

 $\sum_{r=n+1}^{3n} (r+2)(r+3) = \frac{2}{3}n(an^2 + bn + c)$

where a, b and c are integers to be found.

(4)

(Total 10 marks)

9. (a) Use the results for $\sum_{r=1}^{n} r$ and $\sum_{r=1}^{n} r^2$ to show that

$$\sum_{r=1}^{n} (2r-1)^2 = \frac{1}{3}n(2n+1)(2n-1)$$

for all positive integers *n*.

(6)

(b) Hence show that

$$\sum_{r=n+1}^{3n} (2r-1)^2 = \frac{2}{3}n(an^2+b)$$

where a and b are integers to be found.

(4)

(Total 10 marks)

$\sum_{r=1}^{n}$	$\sum_{1}^{n} (r+2)(r+3) = \frac{1}{3}n(n^2+9n+26)$
for all positive integers <i>n</i> .	

(b) Hence show that

8.

(6)

10. (*a*) Prove by induction

$$\sum_{r=1}^{n} r^{3} = \frac{1}{4} n^{2} (n+1)^{2}.$$
(5)

(b) Using the result in part (a), show that

$$\sum_{r=1}^{n} (r^{3} - 2) = \frac{1}{4} n(n^{3} + 2n^{2} + n - 8).$$
(3)

(c) Calculate the exact value of
$$\sum_{r=20}^{50} (r^3 - 2)$$
.

(3)

(Total 11 marks)

TOTAL FOR PAPER: 80 MARKS