Write your name here

AS and A level Further Mathematics Core Pure Mathematics

Practice Paper Series

You must have:
 Mathematical Formulae and Statistical Tables (Pink)

Total Marks

Instructions

- Use black ink or ball-point pen.
- If pencil is used for diagrams/sketches/graphs it must be dark (HB or B).
- Fill in the boxes at the top of this page with your name, centre number and candidate number.
- Answer all the questions and ensure that your answers to parts of questions are clearly labelled.
- Answer the questions in the spaces provided - there may be more space than you need.
- You should show sufficient working to make your methods clear. Answers without working may not gain full credit.
- Inexact answers should be given to three significant figures unless otherwise stated.

Information

- A booklet 'Mathematical Formulae and Statistical Tables' is provided.
- There are 10 questions in this question paper. The total mark for this paper is 80 .
- The marks for each question are shown in brackets - use this as a guide as to how much time to spend on each question.
- Calculators must not be used for questions marked with a * sign.

Advice

- Read each question carefully before you start to answer it.
- Try to answer every question.
- Check your answers if you have time at the end.
- If you change your mind about an answer, cross it out and put your new answer and any working underneath.

1. Show, using the formulae for $\sum_{r=1}^{n} r$ and $\sum_{r=1}^{n} r^{2}$, that

$$
\sum_{r=1}^{n} 3(2 r-1)^{2}=n(2 n+1)(2 n-1), \text { for all positive integers } n
$$

2. (a) Using the formula for $\sum_{r=1}^{n} r^{2}$ write down, in terms of n only, an expression for

$$
\sum_{r=1}^{3 n} r^{2}
$$

(b) Show that, for all integers n, where $n>0$,

$$
\sum_{r=2 n+1}^{3 n} r^{2}=\frac{n}{6}\left(a n^{2}+b n+c\right)
$$

where the values of the constants a, b and c are to be found.
3. (a) Using the formulae for $\sum_{r=1}^{n} r$ and $\sum_{r=1}^{n} r^{2}$, show that

$$
\sum_{r=1}^{n}(r+1)(r+4)=\frac{n}{3}(n+4)(n+5)
$$

for all positive integers n.
(b) Hence show that

$$
\sum_{r=n+1}^{2 n}(r+1)(r+4)=\frac{n}{3}(n+1)(a n+b)
$$

where a and b are integers to be found.
4. (a) Use the standard results for $\sum_{r=1}^{n} r^{3}$ and $\sum_{r=1}^{n} r$ to show that

$$
\sum_{r=1}^{n}\left(r^{3}+6 r-3\right)=\frac{1}{4} n^{2}(n+2 n+13)
$$

for all positive integers n.
(b) Hence find the exact value of

$$
\sum_{r=16}^{30}\left(r^{3}+6 r-3\right)
$$

5. (a) Use the results for $\sum_{r=1}^{n} r, \sum_{r=1}^{n} r^{2}$ and $\sum_{r=1}^{n} r^{3}$, to prove that

$$
\sum_{r=1}^{n} r(r+1)(r+5)=\frac{1}{4} n(n+1)(n+2)(n+7)
$$

for all positive integers n.
(b) Hence, or otherwise, find the value of

$$
\sum_{r=20}^{50} r(r+1)(r+5)
$$

6. (a) Use the standard results for $\sum_{r=1}^{n} r$ and $\sum_{r=1}^{n} r^{3}$ to show that

$$
\begin{equation*}
\sum_{r=1}^{n} r\left(r^{2}-3\right)=\frac{1}{4} n(n+1)(n+3)(n-2) \tag{5}
\end{equation*}
$$

(b) Calculate the value of $\sum_{r=10}^{50} r\left(r^{2}-3\right)$.
7. (a) Use the standard results for $\sum_{r=1}^{n} r$ and $\sum_{r=1}^{n} r^{2}$ to show that

$$
\sum_{r=1}^{n}(2 r-1)^{2}=\frac{1}{3} n\left(4 n^{2}-1\right)
$$

(b) Hence show that

$$
\sum_{r=2 n+1}^{4 n}(2 r-1)^{2}=a n\left(b n^{2}-1\right)
$$

where a and b are constants to be found.
8. (a) Use the standard results for $\sum_{r=1}^{n} r$ and $\sum_{r=1}^{n} r^{2}$ to show that

$$
\sum_{r=1}^{n}(r+2)(r+3)=\frac{1}{3} n\left(n^{2}+9 n+26\right)
$$

for all positive integers n.
(b) Hence show that

$$
\sum_{r=n+1}^{3 n}(r+2)(r+3)=\frac{2}{3} n\left(a n^{2}+b n+c\right)
$$

where a, b and c are integers to be found.
9. (a) Use the results for $\sum_{r=1}^{n} r$ and $\sum_{r=1}^{n} r^{2}$ to show that

$$
\sum_{r=1}^{n}(2 r-1)^{2}=\frac{1}{3} n(2 n+1)(2 n-1)
$$

for all positive integers n.
(b) Hence show that

$$
\sum_{r=n+1}^{3 n}(2 r-1)^{2}=\frac{2}{3} n\left(a n^{2}+b\right)
$$

where a and b are integers to be found.
10. (a) Prove by induction

$$
\begin{equation*}
\sum_{r=1}^{n} r^{3}=\frac{1}{4} n^{2}(n+1)^{2} \tag{5}
\end{equation*}
$$

(b) Using the result in part (a), show that

$$
\sum_{r=1}^{n}\left(r^{3}-2\right)=\frac{1}{4} n\left(n^{3}+2 n^{2}+n-8\right)
$$

(c) Calculate the exact value of $\sum_{r=20}^{50}\left(r^{3}-2\right)$.

